If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=20
We move all terms to the left:
c^2-(20)=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| 9x-8=9x-0 | | 20+2(4y-3)=110 | | 3(n-2)=3(n-5)+9 | | x-10=61 | | 2(-6-9b)=4(-7b-3) | | 5/2-2g=5/2g-3+g | | 9x-8=9x- | | 4(g+3)=7g-6 | | 12k-6(1+11k)=-3k-9(7k-2) | | 5x−7=−3x+9 | | X=53x+4x-5 | | 4(3x+11)-7x=24 | | -7(b-5)+7=-3(10+5b) | | x+14=135 | | 9.2=2.3(b+2) | | -3g+2=11 | | 6(3+x)=6 | | 1.7(2x-5.2)=34 | | 2(q-6)+-8=-2 | | 5+x=-3x-35 | | -3-5j=-7j-3 | | 5t-6=54 | | 2(x+1)+2x=8x-6 | | 5+x=3x-35 | | x+118=45 | | −3x−17=−(17+3x) | | 2/3(9h-3)=3h | | 6=4s+11 | | x+2+4x=32 | | 3y+4=22-3 | | -7y=3y+10 | | 3x=6x-2+7x-2=2 |